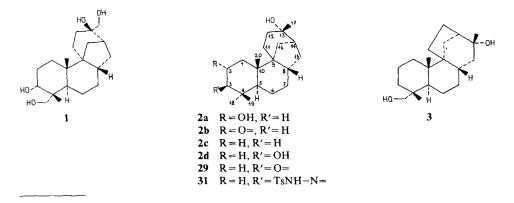
74. A Stereoselective Total Synthesis of (\pm) -Maritimol, (\pm) -2-Deoxystemodinone, (\pm) -Stemodinone, and (\pm) -Stemodin

by Rinaldo Marini Bettolo¹) and Pietro Tagliatesta

Centro di Studio del C.N.R. per la Chimica delle Sostanze Organiche Naturali, Istituto di Chimica Organica, Facoltà di Scienze Mathematiche Fisiche e Naturali, Università degli Studi «La Sapienza», Piazzale Aldo Moro 2, I-00185 Roma

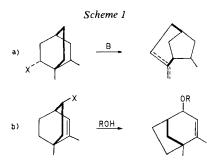
and by Alessandro Lupi¹) and Doriano Bravetti

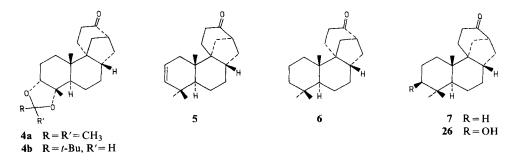

Centro di Studio del C.N.R. per la Chimica dei Recettori e delle Molecole Biologicamente Attive, Istituto di Chimica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, I-00168 Roma

(28. XII. 82)

Summary

A simple and stereoselective total synthesis of (\pm) -maritimol (2d) and its conversion into the other title compounds $((\pm)-2a)$, $((\pm)-2b)$, and $((\pm)-2c)$ is described. The unique bicyclo [3.2.1] octane moiety, constituting their C/D-ring system, is stereospecifically obtained by solvolytic rearrangement of the methanesulfonate 23.

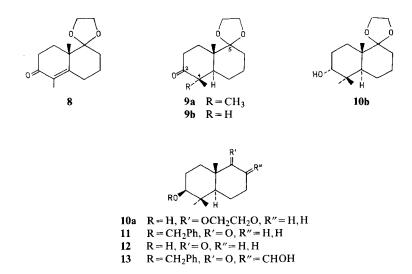

There has been much interest in the recent past in the synthesis of the diterpenes aphidicolin (= aphidicolane-3a, 16, 17, 18-tetrol; 1) [1], stemodin (= stemodane-2a, 16a-diol; 2a) [2], stemodinone (= 13a-hydroxy-stemodan-2-one; 2b) [2], 2-deoxystemodinone (= stemodan-13a-ol; 2c) [2] [3], maritimol (= stemodane-3 β , 16adiol; 2d) [4], and stemarin (= stemarane-13a, 18-diol: 3) [3], owing to their


1) Authors to whom correspondence should be addressed.

intersting biological properties [4] [5] and to their challenging C/D-ring system constituted by a unique bicyclo [3.2.1] octane moiety.

The same system is also present in the more complex delphinine- and napelline-type diterpene alkaloids for which *Wiesner et al.* developed synthetic routes based on the solvolytic rearrangement of suitably substituted bicyclo[2.2.2]-octane systems [6]. Considering only solvolytic conditions, this rearrangement can be performed either on substrates which can undergo elimination and in the presence of a suitable base $(\rightarrow \text{delphinine-type})^2$) [8], or on substrates which may or may not be deprotonated, but in the absence of a suitable base and in the presence of a nucleophile $(\rightarrow \text{napelline-type})$ [9]. In the first case, elimination follows the rearrangement (a) in *Scheme 1*), and obviously these conditions are synthetically useful for compounds alkylated at the bridgehead C-atom next to the leaving group. In the second case the nucleophile will capture the carbenium ion which developes at the original bridgehead C-atom (b) in *Scheme 1*). Whether or not the rearrangement will proceed quantitatively depends on the presence [9-11] of a double bond *syn* to the leaving group.

When the first syntheses of compounds 1 [12a-c], and 2a [13] via the ketones 4 and 5, respectively, were published, it appeared very attractive to us to synthesize these key intermediates by a napelline-type rearrangement. We have therefore prepared, from podocarpic acid, the ketones 6 and 7 [10], models for the ketones 4 and 5, showing that the two systems can be easily synthesized by this approach.



²) Pyrolytic conditions are also possible and were used first for this type of rearrangement [7].

A delphinine-type rearrangement was on the contrary used for the syntheses of **2b** [14], **3** [15], and **2d** [16].

While we will dedicate a forthcoming paper to the total synthesis of aphidicolin (1), we wish to describe herein a new stereoselective and direct total synthesis of maritimol (2d) by solvolytic rearrangement of the methanesulfonate 23, and its conversion into 2-deoxystemodinone (2c) [13] [14] [17] and into the unsaturated alcohol 32, which had already been transformed into stemodin (2a) and stemodinone (2b) [13].

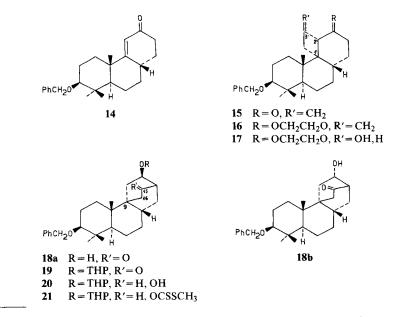
Our starting material was the easily available enone 8 [12a] [12b]; methylation in liquid NH₃ of the enolate intermediate formed during the metal/NH₃ reduction [18] of 8 gave regiospecifically the geminal-dimethylated ketone 9a, which was subsequently reduced with LiAlH₄ in ethyl ether (Et₂O) to the alcohol 10a³). The 2β -configuration, assigned to the alcohol 10a on the basis of many precedents [20], was confirmed (s. below) by chemical correlation.

Alcohol 10a was then protected as benzyl ether by refluxing it in THF with benzyl bromide in the presence of NaH; after standard workup, treatment with dilute HCl-solution unblocked the keto group giving directly compound 11^4).

The following C-ring construction was realized by a *Robinson* annellation; to this purpose, the ketone 11 was transformed into the more reactive hydroxymethylidene derivative 13, by condensing it with ethyl formate in C_6H_6 in the presence of CH₃ONa [22]. Compound 13 was then reacted, in the presence of triethylamine, with 3-buten-2-one, and subsequent treatment of the intermediate

³) The small amount (11%) of alcohol 10b formed in the course of this reaction was reoxidized to 9a with pyridinium dichromate [19] in CH_2Cl_2 and then recycled.

⁴) Hydrogenolysis of 11 gave the known 12 [21] confirming the 2β-configuration assigned to the hydroxy group of 10a and establishing that epimerization had not occurred to any extent during NaH treatment.


Michael adducts with CH₃ONa in CH₃OH gave finally the enone 14 [23]. Since the new chiral center at C(8) was set-up under equilibrating conditions, it was assigned the more stable (on stereochemical grounds) β -configuration, in agreement with precedent results [24]; this assignment was confirmed by the correct configuration of the final compounds.

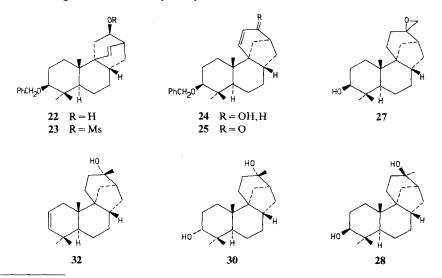
The stage was then set for the construction of the bicyclo [2.2.2]octane system which was realized by the *Wiesner*-two-carbon-annellation sequence [25]; thus photoaddition of allene to 14 gave regio- and stereospecifically the adduct 15, whose configuration, anticipated on the basis of the *Wiesner* rule [26] and precedent results [10] [15], was later confirmed by the correct structure of the final compounds.

The photoadduct 15 was quantitatively converted into the ethylene acetal 16 under standard conditions in C_6H_6 in the presence of *p*-toluenesulfonic acid. The acetal 16 was then ozonized in a 1:1 mixture of abs. C_2H_5OH/CH_2Cl_2 at -78° , and the ozonide was reduced in the same solution with NaBH₄ yielding the cyclobutanol 17.

Treatment of crude 17 with dilute HCl-solution in THF caused the unblocking of the keto group; subsequently, the resulting aldol system underwent, in dilute NaOH-solution, a *retro*-aldol reaction followed by a new aldol condensation to give the aldols 18a and $18b^5$) in a 4.5:1 ratio.

As indicated by many precedents [6] [11], the hydroxy group of the major epimer 18a was assigned the β -configuration stabilized by H-bonding. This assignment was confirmed also by the success of the subsequent rearrangement to the

⁵) The minor epimer 18b underwent further equilibration in dilute NaOH-solution resulting in additional 18a.


stemodin system. It should also be noticed that, as a result of the choice of the proper synthetic strategy, the hydroxy group emerges from the aldol condensation *in the correct configuration for the rearrangement simultaneously with the construction of the skeleton* [8b].

The next step was the introduction of the Δ^{15} -double bond which is necessary for a quantitative rearrangement [9] [10] [11b]. The aldol **18a** was therefore transformed by standard procedure into the tetrahydropyranyl ether **19** which, upon NaBH₄ reduction in CH₃OH/Et₂O 1:1, gave the secondary alcohol **20**. The sodium salt of the latter was then converted into the dithiocarbonate **21** by treatment with CS₂ followed by that with CH₃I. Compound **21**, on heating at reflux in *o*-xylene, underwent a *Chugaev* reaction to form the Δ^{15} -double bond; during this operation a partial loss of the pyranyl group also occurred, and the complete removal of the latter was achieved by acidic workup to give the unsaturated alcohol **22**.

At this point it was only necessary to elaborate the hydroxy into a good leaving group, to set the stage for the rearrangement of the bicyclo [2.2.2] octane to the bicyclo [3.2.1] octane system. The alcohol **22**, dissolved in CH_2Cl_2 , was therefore treated with methanesulfonyl chloride in the presence of Et_3N to give quantitatively the corresponding methanesulfonate **23**.

The conditions for the rearrangement were slightly modified in comparison with those adopted in the model series [10]: in fact we found that the methanesulfonate 23 rearranges also in acetone/water 2:1 giving directly and stereospecifically the allylic alcohol 24^6).

Oxidation of the latter with pyridinium chlorochromate on alumina [27] in CH_2Cl_2 afforded the a,β -unsaturated ketone 25, proving beyond any doubt the rearrangement had proceeded successfully. Hydrogenation of 25 in the presence of 10% Pd/C gave then the hydroxy ketone 26 which was reacted with dimethyl-

⁶) The stereospecific outcome of this reaction could be explained by the attack of the nucleophile either to a classical carbonium ion from the less hindered *exo*-side or to a non classical bridged one.

sulfoxonium methylide in dimethylsulfoxide (DMSO) [1] [13] to give an epimeric mixture of spiro-epoxides 27. Finally, LiB $(C_2H_5)_3H$ ('Super-Hydride') reduction [13] of the mixture 27 afforded in a 5:1 ratio a mixture of racemic maritimol (2d; identical with an authentic sample by TLC. in several solvent systems, IR., ¹H-NMR., and MS. [4]) and its C(13) epimer 28.

We turned then to the synthesis of the other *Stemodia maritima* component 2-deoxystemodinone $(2c)^7$). Oxidation of 2d with pyridinium chlorochromate in CH₂Cl₂ afforded the hydroxy ketone 29^8), already prepared from natural 2d [4]. Treatment of 29 with *p*-toluenesulfonohydrazide in CH₃OH at reflux gave then quantitatively the *p*-toluenesulfonylhydrazone 31 which, on reduction with NaBH₃CN [28] in THF yielded 2-deoxystemodinone (2c; identical with an authentic sample by TLC. in several solvent systems, IR., ¹H-NMR.⁹) and MS.).

Finally 31, treated in THF with CH₃Li [29], gave the known 32 [13] formally completing therefore a new total synthesis of stemodin $(2a)^{10}$ and stemodinone (2b).

We wish to thank Mrs. Anna Brugnoli and Mr. Romano Amore for technical assistance. Mass spectra are due to the courtesy of Prof. P. L. Giacomello and Mr. Fausto Angelelli (Istituto di Chimica Farmaceutica, Facoltà di Farmacia, Università «La Sapienza», Roma). We are also indebted to Prof. N. Doorembos (University of Southern Illinois) and C. D. Hufford (University of Mississippi) for kindly providing a sample of 2d and to Dr. P. S. Manchand (Hoffmann-La Roche Inc.) for generously donating us samples of 2a, 2b and 2c.

Experimental Part

General remarks. Thin layer chromatography (TLC.): silica gel 60 F_{254} , Merck. Column chromatography: silica gel 60, 70-230 mesh ASTM. All solvents were analytical grade. All solutions were evaporated to dryness under vacuum. RT.=room temperature; physical constants and spectra were determined using the following instrumentation. Melting points (m.p.): Kofler or Mettler-FP-61 apparatus (uncorrected). UV. spectra ($\lambda_{max}(\varepsilon)$): Varian-DMS-90. IR. spectra (absorptions in cm⁻¹): Perkin-Elmer-298-infrared spectrophotometer. ¹H-NMR. spectra (chemical shifts in ppm relative to internal tetramethylsilane (=0 ppm), coupling constants J in Hz; s=singlet, d=doublet, m=multiplet, br.=broad): Varian-EM-360-NMR. spectrometer. Mass spectra (MS.) [m/z]: Hewlett-Packard-5980 spectrometer with a model 5934 data collection system (70 eV), electron ionization.

Synthesis of 5, 5-ethylenedioxy-1, 1, 4a, β -trimethyl-trans-3, 4, 4a, 5, 6, 7, 8, 8a-octahydronaphthalen-2(1H)one (9a). A solution of the enone 8 (5.0 g, 21.2 mmol) in anh. THF (50 ml) was added dropwise under N₂ to a solution of Li (0.5 g, 72.0 mmol) in distilled NH₃ (300 ml) at --78°. After stirring for 1 h at -78°, CH₃I (7.0 ml, 112.4 mmol) was added dropwise, and the medium soon turned white. The dry-ice/acetone bath was then removed and stirring was continued overnight. Then water (50 ml) was added and the mixture thoroughly extracted with Et₂O. The combined org. exctracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue was purified by SiO₂-column chromatography (petroleum ether (40-70°)/Et₂O 7:3) giving pure 9a (3.3 g, 62%) and 9b (0.55 g, 11%). Crystallization of 9a (CH₃OH) gave an analytical sample, m.p. 50-51.5°. – IR. (CHCl₃): 1693. – ¹H-NMR. (CCl₄): 0.97 (s, 3 H, CH₃); 1.00 (s, 3 H, CH₃); 1.16 (s, 3 H, CH₃); 3.84 (s, 4 H, OCH₂CH₂O). – MS.: 252 (M⁺, 2.1), 209 (51.3), 112 (34.7), 99 (100.0), 86 (29.6).

C15H24O3 (252.34) Calc. C 71.39 H 9.59% Found C 71.35 H 9.61%

⁷) We had already prepared this compound in the course of our model work [10].

⁸) LiB[CH(CH₃)C₂H₅]₃H (*L*-Selectride) reduction of **29** gave (\pm) -3-epimaritimol (**30**).

⁹⁾ Our ¹H-NMR. data match those reported in [13] rather than in [17].

¹⁰) For another synthetic approach to the stemodane skeleton s. [30].

Synthesis of 5,5-ethylenedioxy-1, 1, $4\alpha\beta$ -trimethyl-trans-perhydro- 2β -naphthol (10a). A solution of 9a (9.0 g, 35.7 mmol) in anh. Et₂O (30 ml) was added dropwise at r.t. to a stirred LiAlH₄ (1.5 g, 39.5 mmol) suspension in anh. Et₂O (30 ml). After 15 min, the mixture was cooled with an ice-bath, the excess LiAlH₄ cautiously quenched with CH₃OH (10 ml) and the mixture poured into water and thoroughly extracted with Et₂O. The combined extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated to dryness. The residue was crystallized (hexane) affording 10a (6.0 g). The mother liquors were evaporated and the residue was chromatographed on a SiO₂-column (petroleum ether (40-70°)/Et₂O 6:4) yielding, besides 10b (1.0 g, 11%), additional 10a (0.7 g) which was crystallized to give an analytical sample, m.p. 103-104°. Total yield of 10a 73%. - IR. (CHCl₃): 3610, 3465. - ¹H-NMR. (CCl₄): 0.72 (s, 3 H, CH₃); 0.96 (s, 3 H, CH₃); 1.00 (s, 3 H, CH₃); 3.84 (s, 4 H, OCH₂CH₂O). - MS.: 254 (10.0, M^+), 99 (100.0), 86 (19.2).

C₁₅H₂₆O₃ (254.36) Calc. C 70.83 H 10.30% Found C 70.90 H 10.40%

Synthesis of 6β -benzyloxy-5, 5, 8a β -trimethyl-trans-3, 4, 4a, 5, 6, 7, 8, 8a-octahydronaphthalen-1(2H)-one (11). To a stirred solution of 10a (10.0 g, 39.3 mmol) in anh. THF (150 ml), NaH (80% in white oil, 4.6 g, 153.3 mmol) was added portionwise under N₂. After refluxing for 1 h, benzyl bromide (6.0 ml, 50.5 mmol) was added and boiling at reflux continued for 3 h. Then the mixture was cooled with an ice-bath, excess NaH quenched with CH₃OH (40 ml), HCl (6N, 40 ml) added, the mixture refluxed for 30 min, cooled to r.t. and thoroughly extracted with Et₂O. The combined extracts were washed with NaHCO₃-solution, water and sat. NaCl-solution, and dried (Na₂SO₄). Evaporation of the solvent gave a residue which was crystallized (CH₃OH) giving 11 (8.9 g). The mother liquors were evaporated, and the residue was chromatographed on a SiO₂-column (petroleum ether (40-70°)/Et₂O 9:1) affording additional 11 (2.0 g) which was crystallized to obtain an analytical sample, m.p. 93-94°. Total yield of 11 92%. – IR. (CHCl₃): 1695. – ¹H-NMR. (CCl₄): 0.90 (s, 3 H, CH₃); 0.97 (s, 3 H, CH₃); 1.10 (s, 3 H, CH₃); 4.43 (*AB*, J_{AB} = 12, 2 H, $C_6H_5CH_2$); 7.20 (s, 5 H, $C_6H_5CH_2$). – MS.: 300 (12.9, M^+), 209 (29.3), 201 (9.9), 149 (12.3), 91 (100).

C20H28O2 (300.42) Calc. C 79.95 H 9.39% Found C 79.88 H 9.45%

Synthesis of 6β -benzyloxy-2-hydroxymethylidene-5, $5, 8\alpha\beta$ -trimethyl-trans-3, 4, 4a, 5, 6, 7, 8, 8a-octahydronaphthalen-1(2H)-one (13). Dry HCO₂Et (12.0 ml, 149.0 mmol) was added to a stirred suspension of CH₃ONa (4.5 g, 83.3 mmol) in anh. C₆H₆ (45 ml). After 30 min, the mixture was cooled with an ice-bath, and a solution of 11 (3.0 g, 10.0 mmol) in anh. C₆H₆ (45 ml) was added dropwise under N₂ with stirring. The mixture was allowed to warm up to r.t. overnight, then it was diluted with Et₂O, acidified with 2N H₂SO₄, the org. layer was separated, washed with water and sat. NaCl-solution, and dried (Na₂SO₄). Evaporation of the solvent gave 13 (3.2 g, 97%) which was pure enough to be used in the next reaction without purification. An analytical sample was obtained by SiO₂-column chromatography (petroleum ether (40-70°)/Et₂O 9:1) and subsequent crystallization (hexane), m.p. 72-73°. - 1R. (CHCl₃): 1705. - ¹H-NMR. (CCl₄): 0.73 (s, 3 H, CH₃); 0.86 (s, 3 H, CH₃); 1.06 (s, 3 H, CH₃); 4.46 (AB, J_{AB} = 12, 2 H, C₆H₅CH₂); 7.23 (s, 5 H, C₆H₅CH₂); 8.40 (s, 1 H, C=CHOH). - MS:: 328 (3.6, M^+), 177 (4.3), 91 (100.0).

C21H28O3 (328.44) Calc. C 76.79 H 8.59% Found C 76.70 H 8.67%

Synthesis of 3β -benzyloxy-9(11)-podocarpen-12-one (14). To a cooled (ice-bath) mixture of 13 (12.0 g, 36.5 mmol) and 3-buten-2-one (8.0 ml, 97.6 mmol), Et₃N (8.0 ml, 57.4 mmol) was added under N₂. After 2 h, the ice-bath was removed and stirring continued overnight at r.t.. Then the solution, diluted with Et₂O, was repeatedly washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue was taken up with CH₃OH (400 ml) and cooled in an ice-bath. CH₃ONa (10.2 g, 188.8 mmol) was subsequently added while stirring under N₂, and the mixture was allowed to warm up to r.t. overnight. Then the solution was refluxed for 3 h, cooled to r.t., diluted with water, neutralized with 5% HCl-solution and CH₃OH was evaporated. The residue was thoroughly extracted with CH₂Cl₂, and the combined org. extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated and the residue purified by SiO₂-column chromatography (petroleum ether (40-70°)/Et₂O 6:4) to afford additional 14 (4.0 g) which was crystallized to give an analytical sample, m.p. 98–99°. Total yield of 14 76%. – UV. (EtOH): 239 (26000). – IR. (CHCl₃): 1658, 1600. – ¹H-NMR. (CCl₄): 0.90 (s, 3 H, CH₃); 0.99 (s, 3 H, CH₃); 1.13 (s, 3 H, CH₃); 4.47 (*AB*, *J_{AB}*= 12, 2 H, C₆H₃CH₂); 5.66

(d, J = 1, 1 H, H-C(11)); 7.22 $(s, 5 \text{ H}, \text{C}_6H_5\text{CH}_2)$. - MS.: 352 (12.6, M^+), 261 (98.4), 253 (46.0), 244 (22.4), 214 (11.4), 91 (100.0).

C₂₄H₃₂O₂ (352.50) Calc. C 81.77 H 9.15% Found C 81.74 H 9.10%

Synthesis of 3β -benzyloxy-3'-methylidene-9, 11β , 3', 4'-tetrahydrocyclobuta [1', 2': 9a, 11]podocarpan-12-one (15). The enone 14 (3.0 g, 8.5 mmol) was dissolved in freshly distilled THF (50 ml) and poured into a gas-washing bottle (pyrex). After cooling to -78° , allene was added in a large excess (about 40-fold). The stirred mixture was then irradiated for 6 h under N₂ by an *Italquartz UV 13F* 200 W Hg-lamp placed side by side in a *Dewar* containing a dry-ice/acetone bath. The reaction well was then removed from the cooling bath and left overnight at r.t. to allow excess allene to evolve. Then the solution was evaporated and the residue crystallized (hexane) yielding 15 (2.6 g). The mother liquors were purified by SiO₂-column chromatography (petroleum ether (40–70°)/Et₂O 6:4) giving further 15 (0.3 g) which was crystallized to give an analytical sample, m.p. 100.5–101.5°. Total yield of 15 87%. – IR. (CHCl₃): 1685. – ¹H-NMR. (CCl₄): 0.83 (s, 3 H, CH₃); 0.87 (s, 3 H, CH₃); 0.97 (s, 3 H, CH₃); 4.46 (*AB*, *J_{AB} = 12*, 2 H, C₆H₅CH₂); 4.82 (br. s, 2 H, C=CH₂); 7.26 (s, 5 H, C₆H₅CH₂). – MS.: 392 (1.0, M^+), 301 (5.3), 283 (10.6), 269 (8.5), 266 (9.0), 186 (49.8), 173 (14.9), 91 (100.0).

C27H36O2 (392.56) Calc. C 82.60 H 9.24% Found C 82.46 H 9.31%

Synthesis of 3β -benzyloxy-3'-methylidene-9, 11 β , 3', 4'-tetrahydrocyclobuta [1', 2':9a, 11]podocarpan-12-one ethylene acetal (16). To 15 (2.0 g, 5.1 mmol), dissolved in anh. C₆H₆ (25 ml), ethylene glycol (1.0 ml, 17.9 mmol) and p-TsOH (75 mg, 0.39 mmol) were added. The mixture was refluxed under N₂ for 3 h with a *Dean-Stark* apparatus. After cooling to r.t., the mixture was diluted with Et₂O and washed with NaHCO₃-solution, water and sat. NaCl-solution. Evaporation gave a residue which was crystallized (hexane) yielding 16 (2.0 g). The mother liquors were evaporated, and the residue was chromatographed on a SiO₂-column (petroleum ether (40-70°)/Et₂O 8:2) affording additional 16 (130 mg) which was crystallized to yield an analytical sample, m.p. 112-113°. Total yield of 16 96%. – IR. (CHCl₃): 1464. – ¹H-NMR. (CCl₄): 0.85 (s, 3 H, CH₃); 0.93 (s, 6 H, 2 CH₃); 3.85 (s, 4 H, OCH₂CH₂O); 4.43 (*AB*, J_{AB} = 12, 2 H, C₆H₅CH₂); 4.70 and 4.83 (2m, 2 H, C=CH₂); 7.20 (s, 5 H, C₆H₅CH₂). – MS.: 436 (100.0, M^+), 191 (23.1), 177 (28.4), 99 (70.2), 91 (57.5).

C₂₉H₄₀O₃ (436.61) Calc. C 79.77 H 9.23% Found C 79.45 H 9.29%

Synthesis of 3β -benzyloxy-12 β -hydroxy-9 β , 13 β -ethano-9 β -podocarpan-15-one (18a). Compound 16 (1.5 g, 3.4 mmol) was dissolved in abs. C_2H_5OH/CH_2Cl_2 1:1 (150 ml) and cooled to -78° ; a stream of ozone was then slowly passed through the solution until a faint blue color persisted. NaBH₄ (3.0 g, 79.3 mmol) was then added portionwise, and the mixture was stirred for an additional 4 h at -78° . After evaporation of the solvent, the residue was taken up with water, neutralized with 5% HClsolution and thoroughly extracted with CH_2Cl_2 . The combined extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. To the residue, dissolved in THF (30 ml), IN HCl (15 ml) was added, and the solution was stirred under N_2 overnight at r.t. Then IN NaOH (30 ml) was added dropwise, followed by CH₃OH (30 ml) and THF (50 ml); stirring at r.t. under N_2 was continued for 24 h. After neutralization with 5% HCl-solution and evaporation of the org. solvents, the residue was diluted with water and thoroughly extracted with CHCl₁. The combined org. extracts were washed with water and sat. NaCl-solution, dried (Na2SO4) and evaporated. The residue was purified by SiO₂-column chromatography (CHCl₃/Et₂O 8:2) affording first 18b (0.2 g, 15%) and then its epimer 18a (0.9 g, 67%). The aldol 18a was then crystallized (CHCl₃/CH₃OH) to give an analytical sample, m.p. 211-212°. - IR. (CHCl₃): 3600, 3415, 1710. - ¹H-NMR. (CDCl₃): 0.86 2 H, $C_6H_5CH_2$; 7.32 (s, 5 H, $C_6H_5CH_2$). - MS.: 378 (0.3, M^+ - 18), 368 (6.6), 324 (11.1), 231 (14.8), 147 (23.4), 91 (100.0).

C₂₆H₃₆O₃ (396.55) Calc. C 78.74 H 9.15% Found C 78.51 H 9.19%

Synthesis of 3β -benzyloxy- 12β -(3, 4, 5, 6-tetrahydro-2H-pyran-2-yl)oxy- 9β , 13β -ethano- 9β -podocarpan-15-one (19). To a stirred solution of 18a (1.8 g, 4.5 mmol) and p-TsOH (40 mg, 0.2 mmol) in CHCl₃ (70 ml), 3,4-dihydro-2H-pyran (3.2 ml, 35.3 mmol) was added dropwise at r.t. After 2 h, the mixture was washed with NaHCO₃-solution, water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue was chromatographed on a SiO₂-column (petroleum ether (40- 70°)/Et₂O 6:4) yielding **19** (2.0 g, 4.2 mmol, 93%) which was crystallized (hexane/CH₂Cl₂) to give an analytical sample, m.p. 168–169°. – IR. (CHCl₃): 1715. – ¹H-NMR. (CDCl₃): 0.86 (s, 3 H, CH₃); 0.96 (s, 3 H, CH₃); 1.00 (s, 3 H, CH₃); 4.50 (*AB*, J_{AB} =12, 2 H, C₆H₅CH₂); 7.30 (s, 5 H, C₆H₅CH₂). – MS.: 480 (5.9, M^+), 271 (30.4), 229 (17.6), 91 (100.0), 85 (74.3).

C31H44O4 (480.66) Calc. C 77.46 H 9.23% Found C 77.15 H 9.31%

Synthesis of 3β -benzyloxy- 12β -(3, 4, 5, 6-tetrahydro-2H-pyran-2-yl)oxy- 9β , 13β -ethano- 9β -podocarpan-15-ol (20). To a stirred solution of 19 (1.5 g, 3.1 mmol) in CH₃OH/Et₂O 1:1 (300 ml), NaBH₄ (1.5 g, 39.6 mmol) was added portionwise. After 30 min, the mixture was evaporated, taken up with water and thoroughly extracted with CHCl₃. The combined extracts were washed with NH₄Cl-solution, water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. Purification of the residue by SiO₂column chromatography (petroleum ether (40-70°)/Et₂O 6:4) afforded 21 (1.3 g, 87%) which was crystallized (hexane) to give an analytical sample, m.p. 95-97°. – IR. (CHCl₃): 3510. – ¹H-NMR. (CCl₄): 0.87 (s, 3 H, CH₃); 0.97 (s, 3 H, CH₃); 1.00 (s, 3 H, CH₃); 4.43 (*AB*, J_{AB} = 12, 2 H, C₆H₅CH₂); 7.20 (s, 5 H, C₆H₅CH₂). – MS.: 381 (1.4, M^+ – 101), 273 (45.2), 255 (13.8), 91 (100.0), 85 (91.0).

C31H46O4 (482.68) Calc. C 77.13 H 9.61% Found C 76.91 H 9.70%

Synthesis of O-[3 β -benzyloxy-12 β -(3, 4, 5, 6-tetrahydro-2H-pyran-2-yl)oxy-9 β , 13 β -ethano-9 β -podocarpan-15-yl] S-methyl dithiocarbonate (21). To a solution of 20 (900 mg, 1.86 mmol) in anh. Et₂O (9 ml), NaH (80% in white oil, 180 mg, 6.0 mmol) was added while stirring under N₂. After refluxing overnight, CS₂ (1.8 ml, 29.8 mmol) was added, boiling continued for 6 h additional, the mixture cooled to r.t. and CH₃I (0.6 ml, 9.60 mmol) added. After refluxing for 2 h, the mixture was cooled to r.t., excess NaH quenched with CH₃OH, water added and the resulting solution thoroughly extracted with Et₂O. The combined extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. Purification of the residue by SiO₂-column chromatography (petroleum ether (40-70°)/Et₂O 9:1) afforded 21 (795 mg, 74%) which was crystallized (Et₂O/CH₃OH) to m.p. 153-154°. – IR. (CHCl₃): 1235. – ¹H-NMR. (CCl₄): 0.87 (s, 3 H, CH₃); 1.00 (s, 6 H, 2 CH₃); 2.49 (s, 3 H, SCH₃); 4.46 (*AB*, J_{AB} =12, 2 H, C₆H₅CH₂); 5.50 (br. s, 1 H, H-C(15)); 7.23 (s, 5 H, C₆H₅CH₂). – MS.: 380 (0.1, M^+ – 180–84), 336 (5.6), 228 (7.6), 91 (44.1), 85 (100.0).

C₃₃H₄₈S₂O₄ (572.71) Calc. C 69.20 H 8.45 S 11.17% Found C 69.40 H 8.52 S 11.19%

Synthesis of 3 β -benzyloxy-9 β , 13 β -vinylene-9 β -podocarpan-12 β -ol (22). A solution of 21 (900 mg, 1.57 mmol) in o-xylene (5 ml) was heated at reflux under N₂ for 5 h. After evaporation of the solvent, the residue was dissolved in 10 ml of THF/5% HCl-solution 4:1 (10 ml) and stirred under N₂ for 2 h at r.t. The mixture was then diluted with water, neutralized with NaHCO₃-solution and thoroughly extracted with CHCl₃. The combined org. extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue was chromatographed on a SiO₂-column (petroleum ether (40-70°)/Et₂O 1:1) yielding 22 (450 mg) which was crystallized (pentane/Et₂O) to give an analytical sample, m.p. 108-109°. – IR. (CHCl₃): 3590, 3445. – ¹H-NMR. (CDCl₃): 0.84 (s, 3 H, CH₃); 0.96 (s, 3 H, CH₃); 1.06 (s, 3 H, CH₃); 4.43 (*AB*, *J_{AB}* = 12, 2 H, C₆H₅CH₂); 5.93 (*B* of *ABX*, *J_{AB}* = 9, *J_{BX}* = 6, 1 H, H-C(15)); 6.26 (*A* of *ABX*, *J_{AB}* = 9, *J_{AX}* = 1, 1 H, H-C(16)); 7.16 (s, 5 H, C₆H₅CH₂). – MS.: 336 (19.3, *M*⁺ - 26-18), 105 (24.6), 91 (100,0).

C₂₆H₃₆O₂ (380.55) Calc. C 82.06 H 9.54% Found C 81.82 H 9.49%

Synthesis of 3 β -benzyloxy-9 β , 13 β -vinylene-9 β -podocarpan-12 β -yl methanesulfonate (23). A solution of 22 (400 mg, 1.05 mmol) and Et₃N (0.4 ml, 2.87 mmol) in anh. CH₂Cl₂ (10 ml) was cooled to 0° and treated with MsC1 (0.2 ml, 2.57 mmol). After 30 min, the solution was diluted with CH₂Cl₂, washed with 3% HCl-solution, w. ter until neutrality and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. Crystallization (CH₂Cl₂/hexane) afforded 23 (435 mg, 90%), m.p. 99-100° (dec.). - IR. (CHCl₃): 1360, 1330, 1170. - ¹H-NMR. (CDCl₃): 0.87 (s, 3 H, CH₃); 0.97 (s, 3 H, CH₃); 1.06 (s, 3 H, CH₃); 2.93 (s, 3 H, OSO₂CH₃); 4.60 (AB, J_{AB} = 12, 2 H, C₆H₅CH₂); 6.03 (B of ABX, J_{AB} = 9, J_{BX} = 6, 1 H, H-C(15)); 6.40 (A of ABX, J_{AB} = 9, J_{AX} = 1, 1 H, H-C(16)); 7.30 (s, 5 H, C₆H₅CH₂).

Synthesis of 3β -benzyloxy-17-nor-stemod-11-en-13-ol (24). A solution of 23 (250 mg, 0.55 mmol) in acetone/water 2:1 (24 ml) was heated at 70° for 5 h under N₂. After evaporation of the acetone, the aq. layer was thoroughly extracted with CH₂Cl₂. The combined org. extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue was chromatographed on a

769

SiO₂-column (petroleum ether (40-70°)/Et₂O 1:1) affording **24** (173 mg, 82%), which was crystallized (hexane) to give an analytical sample, m.p. 111-112°. - IR. (CHCl₃): 3600, 3430. - ¹H-NMR. (CCl₄): 0.87 (s, 3 H, CH₃); 0.97 (s, 3 H, CH₃); 1.10 (s, 3 H, CH₃); 4.40 (*AB*, J_{AB} =12, 2 H, C₆H₅CH₂); 5.38 (*B* of *ABX*, J_{AB} =9, J_{BX} =2, 1 H, H-C(11)); 5.98 (*A* of *ABX*, J_{AB} =9, 1 H, H-C(12)); 7.16 (s, C₆H₅CH₂). - MS.: 380 (1.2, M⁺), 272 (10.8), 233 (21.8), 159 (13.8), 91 (100.0).

C₂₆H₃₆O₂ (380.55) Calc. C 82.06 H 9.54% Found C 81.91 H 9.59%

Synthesis of 3β -benzyloxy-17-nor-stemod-11-en-13-one (25). A stirred solution of 24 (250 mg, 0.66 mmol) in anh. CH₂Cl₂ was treated portionwise with pyridinium chlorochromate/Al₂O₃ until TLC. monitoring (petroleum ether (40-70°)/Et₂O 1:1) indicated the disappearance of the starting material. The mixture was then diluted with Et₂O and filtered through a *Celite* pad. The resulting solution was then evaporated and the residue chromatographed on a SiO₂-column (petroleum ether (40-70°)/Et₂O 6:4) affording 25 (220 mg, 88%). An analytical sample was crystallized (Et₂O/CH₃OH) to a m.p. of 176.5-177.5°. – UV. (EtOH): 237 (12954). – 1R. (CHCl₃): 1670. – ¹H-NMR. (CDCl₃): 0.95 (s, 3 H, CH₃); 1.02 (s, 3 H, CH₃); 1.20 (s, 6 H, 2 CH₃); 4.52 (AB, J_{AB} =12, 2 H, C₆H₅CH₂); 5.72 and 5.89 (2 d, J=2, H-C(11), H-C(12)); 7.32 (s, 5 H, C₆H₅CH₂). – MS.: 378 (0.4, *M*⁺), 350 (14.0), 287 (14.0), 259 (24.3), 217 (15.4), 203 (14.2), 91 (100.0).

C₂₆H₃₄O₂ (378.53) Calc. C 82.49 H 9.05% Found C 82.25 H 9.11%

Synthesis of 3β -hydroxy-17-nor-stemodan-13-one (26). A solution of 25 (85 mg, 0.22 mmol) in anh. dioxane (4 ml) was hydrogenated at atmospheric pressure in the presence of 10% Pd/C (40 mg). After 4 h, the H₂ was pumped off, the mixture diluted with Et₂O and filtered through a Na₂SO₄-pad to remove the catalyst; evaporation of the solvent afforded 26 (60 mg, 95%). Crystallization (Et₂O/hexane) to a m.p. 135.5 – 136.5° gave an analytical sample. – IR. (CHCl₃): 3610, 3470, 1705. – ¹H-NMR. (CDCl₃): 0.84 (s, 3 H, CH₃); 1.00 (s, 6 H, 2 CH₃). – MS.: 290 (43.5, M^+), 257 (36.6), 215 (100.0), 93 (37.7), 79 (35.7).

C₁₉H₃₀O₂ (290.43) Calc. C 78.57 H 10.41% Found C 78.33 H 10.32%

Synthesis of (\pm) -maritimol (2d). To a stirred solution of 26 (75 mg, 0.26 mmol) in anh. DMSO (1.5 ml) at 20° under N₂, a DMSO solution of dimethylsulfoxonium methylide (0.6 ml), prepared from NaH (80% in white oil, 45 mg, 1.5 mmol) and [(CH₃)₃SO]⁺1⁻ (330 mg, 1.5 mmol) in anh. DMSO (1.5 ml) [13], was added and stirred overnight. Then water was added and the mixture thoroughly extracted with Et₂O; the combined extracts were washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. To the residue (27), dissolved in anh. THF (1.5 ml), Li(C₂H₅)₃BH (1M in THF, 0.6 ml, 0.60 mmol) was added with a syringe while stirring under N₂ at r.t. After 1 h, THF (2 ml) was added, followed by CH₃OH (0.1 ml), 10% NaOH-solution (0.35 ml) and 30% H₂O₂-solution (0.8 ml) and the mixture stirred overnight. After dilution with water, the solution was thoroughly extracted with CH₂Cl₂. The combined org. extracts were then washed with water and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue was chromatographed on a SiO₂-column (Et₂O)petroleum ether (40-70°) 8:2) giving (±)-13-epimaritimol (28; 10 mg, 11%) and 2d (54 mg, 69%), m.p. (hexane/Et₂O) 211.5-212.5° ([16]: 212.5-214°).

Synthesis of (\pm) -2-deoxystemodinone (2c). To a stirred solution of 2d (70 mg, 0.23 mmol) in anh. CH₂Cl₂ (2 ml) pyridinium chlorochromate (345 mg, 0.92 mmol) was added. After 24 h, the mixture was diluted with Et₂O and filtered through a *Celite* pad. The solution was evaporated and the residue chromatographed on a SiO₂-column (Et₂O/petroleum ether (40-70°) 7:3) to yield 13a-hydroxystemodan-3-one (29) [4] (64 mg, 91%), m.p. (hexane) 90-91°. To 29 (20 mg, 0.066 mmol) dissolved in CH₃OH (1.5 ml), p-toluenesulfonohydrazide (37 mg, 0.20 mmol) was added, and the stirred solution was gently refluxed under N₂ for 12 h. After dilution with Et₂O, the mixture was washed with 0.1 N HCl, and washings were reextracted with Et₂O; the combined org. layers were washed with NaHCO₃- and sat. NaCl-solution, dried (Na₂SO₄) and evaporated. The residue, constituted by the 3-(p-toluenesulfonylhydrazon)stemodan-13a-ol (31), was dissolved in anh. THF (3 ml) and NaBH₃CN (12 mg, 0.19 mmol) was added; the solution was then refluxed for 4 h under N₂. After dilution with water, the mixture was thoroughly extracted with Et₂O; the org. layers were washed with water, the mixture (40-70°)/Et₂O 7:3) to yield 2c (12 mg, 63%), m.p. (hexane) 146-147° ([17]: 144°). Synthesis of stemod-2-en-13a-ol (32). To the crude 31 (30 mg, 0.063 mmol), obtained as described for the synthesis of 2c, in THF (3 ml), CH₃Li (1.6 m in Et₂O, 0.6 ml, 0.96 mmol) was slowly added under N₂ while stirring at r.t. After 1 h, the solution was diluted with Et₂O and washed with water and 0.1 N HCl; washings were then reextracted with Et₂O; the org. layers were washed with NaHCO₃and sat. NaCl-solution, dried (Na₂SO₄) and evaporated yielding 32 (16 mg, 87%), m.p. (pentane) 128-129° ([13]: 119-122°). - IR. (CCl₄): 3615, 3430, 1665. - ¹H-NMR. (CDCl₃): 0.90 (s, 3 H, CH₃); 0.95 (s, 6 H, 2 CH₃); 1.11 (s, 3 H, CH₃); 5.10-5.70 (m, 2 H, H-C(2), H-C(3)). - MS.: 288 (12.8, M^+), 273 (38.5), 134 (69.5), 105 (45.5), 43 (100.0).

C₂₀H₃₂O (288.46) Calc. C 83.27 H 11.18% Found C 83.45 H 11.29%

REFERENCES

- [1] W. Dalziel, B. Hesp, K. M. Stevenson & J. A. Jarvis, J. Chem. Soc., Perkin Trans. I 1973, 2841.
- [2] P.S. Manchand, J.D. White, H. Wright & J. Clardy, J. Am. Chem. Soc. 95, 2705 (1973).
- [3] P.S. Manchand & J.F. Blount, J. Chem. Soc., Chem. Commun. 1975, 894.
- [4] C. D. Hufford, R. O. Guerrero & N.J. Doorembos, J. Pharm. Sci. 65, 778 (1976).
- [5] R.A. Bucknall, H. Moores, R. Simms & B. Hesp, Antimicrob. Agents Chemother. 4, 294 (1973).
- [6] K. Wiesner, Pure Appl. Chem. 41, 93 (1975); idem, Chem. Soc. Rev. 6, 413 (1977).
- [7] J. P. Johnston & K. H. Overton, J. Chem. Soc., Perkin Trans I 1972, 1490.
- [8] a) K. Wiesner, T. Y. R. Tsai, K. Huber, S. E. Bolton & R. Vlahov, J. Am. Chem. Soc. 96, 4990 (1974);
 b) T. Y. R. Tsai, S. J. Tsai, W. W. Sy, M. N. Shanbag, W. C. Liu, S. F. Lee & K. Wiesner, Heterocycles 7, 217 (1977);
 c) K. Wiesner, T. Y. R. Tsai & K. P. Nambiar, Can. J. Chem. 56, 1451 (1978);
 d) T. Y. R. Tsai, K. P. Nambiar, D. Krikorian, M. Botta, R. Marini Bettolo & K. Wiesner, ibid. 57, 2124 (1979).
- [9] a) K. S. Atwal, R. Marini Bettolo, I. H. Sanchez, T. Y. R. Tsai & K. Wiesner, Can. J. Chem. 56, 1102 (1978); b) S. P. Sethi, K. S. Atwal, R. Marini Bettolo, T. Y. R. Tsai & K. Wiesner, ibid. 58, 1889 (1980).
- [10] D. Bravetti, R. Marini Bettolo & A. Lupi, Helv. Chim. Acta 65, 371 (1982).
- [11] a) H. M. Walborsky, M. E. Baum & A.A. Youssef, J. Am. Chem. Soc. 83, 988 (1961); b) H. L. Goering & M. F. Sloan, ibid. 83, 1992 (1961).
- [12] a) B. M. Trost, Y. Nishimura, K. Yamamoto & S. S. McElvain, J. Am. Chem. Soc. 101, 1328 (1979);
 b) J. E. McMurry, A. Andrus, G. M. Ksander, J. H. Musser & M.A. Johnson, ibid. 101, 1330 (1979);
 J. E. McMurry, A. Andrus, G. M. Ksander, J. H. Musser & M.A. Johnson, Tetrahedron 37, 319 (1981);
 c) E. J. Corey, M.A. Tius & J. Das, J. Am. Chem. Soc. 102, 1742 (1980).
- [13] E.J. Corey, M.A. Tius & J. Das, J. Am. Chem. Soc. 102, 7612 (1980).
- [14] R.B. Kelly, M.L. Harley, S.J. Alward & P.S. Manchand, Can. J. Chem. 60, 675 (1982).
- [15] R. B. Kelly, M. L. Harley & S.J. Alward, Can. J. Chem. 58, 755 (1980).
- [16] E. E. van Tamelen, J. G. Carlson, R. K. Russel & S. R. Zawacky, J. Am. Chem. Soc. 103, 4615 (1981).
- [17] S. Chatterjee, J. Chem. Soc., Chem. Commun. 1979, 622.
- [18] G. Stork, P. Rosen, N. Goldman, R. V. Coombs & J. Tsuji, J. Am. Chem. Soc. 87, 275 (1965).
- [19] E.J. Corey & G. Schmidt, Tetrahedron Lett. 25, 399 (1979).
- [20] R. B. Turner, O. Buchardt, E. Herzog, R. B. Morin, R. Ricbel & G. M. Sanders, J. Am. Chem. Soc. 88, 1766 (1966).
- [21] F. Sondheimer & D. Elad, J. Am. Chem. Soc. 80, 1967 (1958).
- [22] C. H. Shunk & A. L. Wilds, J. Am. Chem. Soc. 71, 3946 (1949).
- [23] R. B. Turner, D. E. Nettleton, jr. & R. Ferrebee, J. Am. Chem. Soc. 78, 5923 (1956).
- [24] a) E. Wenkert, V.I. Stenberg & P. Beak, J. Am. Chem. Soc. 83, 2320 (1961); b) T.A. Spencer, R.A.J. Smith, D.L. Storm & R.M. Villarica, ibid. 93, 4856 (1971).
- [25] R. W. Guthrie, A. Philipp, Z. Valenta & K. Wiesner, Tetrahedron Lett. 34, 2945 (1965).
- [26] a) K. Wiesner, Tetrahedron 31, 1655 (1975); b) G. Marini Bettolo, S. P. Sahoo, G.A. Poulton, T. Y. R. Tsai & K. Wiesner, ibid. 36, 719 (1980); c) J. F. Blount, G.D. Gray, K.S. Atwal, T.Y. R. Tsai & K. Wiesner, Tetrahedron Lett. 26, 4413 (1980).
- [27] Y. Cheng, W. Liu & S. Chen, Synthesis 1980, 223.
- [28] a) L. Caglioti, Org. Synth. 52, 122 (1972); b) R.O. Hutchins, Synthesis 1975, 135.
- [29] R. H. Shapiro & M.J. Heath, J. Am. Chem. Soc. 89, 5734 (1967).
- [30] E. Piers, B.F. Abeysekere, D.J. Herbert & I.D. Suckling, J. Chem. Soc., Chem. Commun. 1982, 404.